6 research outputs found

    Comparative analysis of LTE backbone transport techniques for efficient broadband penetration in a heterogeneous network morphology

    Get PDF
    In the bid to bring about a solution to the nagging problem associated with the provision of ubiquitous broadband access, Next Generation Network (NGN) popularly referred to as Long Term Evolution (LTE) network with appropriate network integration technique is recommended as solution. Currently, Internet Protocol/Multi-Protocol Label Switching (IP/MPLS) is the transport technique in LTE backbone infrastructure. This technique, however, suffers significantly in the event of failure of IP path resulting in delay and packet loss budgets across the network.The resultant effect is degradation in users’ quality of service (QoS) experience with real-time services.  A competitive alternative is the Internet Protocol /Asynchronous Transfer Mode (IP/ATM). This transport technique provides great dynamism in the allocation of bandwidth and supports varying requests of multimedia connections with diverse QoS requirements. This paper, therefore, seeks to evaluate the performance of these two transport techniques in a bid to establish the extent to which the latter technique ameliorates the aforementioned challenges suffered by the previous technique. Results from the simulation show that the IP/ATM transport scheme is superior to the IP/MPLS scheme in terms of average bandwidth utilization, mean traffic drop and mean traffic delay in the ratio of 9.8, 8.7 and 1.0% respectively

    An optimum dynamic priority-based call admission control scheme for universal mobile telecommunications system

    Get PDF
    The dynamism associated with quality of service (QoS) requirement for traffic emanating from smarter end users devices founded on the internet of things (IoTs) drive, places a huge demand on modern telecommunication infrastructure. Most telecom networks, currently utilize robust call admission control (CAC) policies to ameliorate this challenge. However, the need for smarter CAC has becomes imperative owing to the sensitivity of traffic currently being supported. In this work, we developed a prioritized CAC algorithm for third Generation (3G) wireless cellular network. Based on the dynamic priority CAC (DP-CAC) model, we proposed an optimal dynamic priority CAC (ODP-CAC) scheme for Universal Mobile Telecommunication System (UMTS). We then carried out simulation under heavy traffic load while also exploiting renegotiation among different call traffic classes. Also, we introduced queuing techniques to enhance the new calls success probability while still maintaining a good handoff failure across the network. Results show that ODP-CAC provides an improved performance with regards to the probability of call drop for new calls, network load utilization and grade of service with average percentage value of 15.7%, 5.4% and 0.35% respectively

    Analysis of body gestures in anger expression and evaluation in android robot

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in Advanced Robotics on 08 Dec 2020, available online: http://wwww.tandfonline.com/10.1080/01691864.2020.1855244
    corecore